3.691 \(\int \frac{(c+d x^2)^{3/2}}{x^2 (a+b x^2)} \, dx\)

Optimal. Leaf size=102 \[ -\frac{(b c-a d)^{3/2} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{3/2} b}-\frac{c \sqrt{c+d x^2}}{a x}+\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b} \]

[Out]

-((c*Sqrt[c + d*x^2])/(a*x)) - ((b*c - a*d)^(3/2)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(a^(3
/2)*b) + (d^(3/2)*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0914889, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {474, 523, 217, 206, 377, 205} \[ -\frac{(b c-a d)^{3/2} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{3/2} b}-\frac{c \sqrt{c+d x^2}}{a x}+\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)^(3/2)/(x^2*(a + b*x^2)),x]

[Out]

-((c*Sqrt[c + d*x^2])/(a*x)) - ((b*c - a*d)^(3/2)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(a^(3
/2)*b) + (d^(3/2)*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/b

Rule 474

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(c*(e*x)^
(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1))/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)
*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*(c*b - a*d)*(m + 1) + c*n*(b*c*(p + 1) + a*d*(q - 1)) + d*((c*b - a*
d)*(m + 1) + c*b*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]
 && GtQ[q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (c+d x^2\right )^{3/2}}{x^2 \left (a+b x^2\right )} \, dx &=-\frac{c \sqrt{c+d x^2}}{a x}+\frac{\int \frac{-c (b c-2 a d)+a d^2 x^2}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{a}\\ &=-\frac{c \sqrt{c+d x^2}}{a x}+\frac{d^2 \int \frac{1}{\sqrt{c+d x^2}} \, dx}{b}-\frac{(b c-a d)^2 \int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{a b}\\ &=-\frac{c \sqrt{c+d x^2}}{a x}+\frac{d^2 \operatorname{Subst}\left (\int \frac{1}{1-d x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{b}-\frac{(b c-a d)^2 \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{a b}\\ &=-\frac{c \sqrt{c+d x^2}}{a x}-\frac{(b c-a d)^{3/2} \tan ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{3/2} b}+\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.133246, size = 105, normalized size = 1.03 \[ -\frac{(b c-a d)^{3/2} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{3/2} b}-\frac{c \sqrt{c+d x^2}}{a x}+\frac{d^{3/2} \log \left (\sqrt{d} \sqrt{c+d x^2}+d x\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)^(3/2)/(x^2*(a + b*x^2)),x]

[Out]

-((c*Sqrt[c + d*x^2])/(a*x)) - ((b*c - a*d)^(3/2)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(a^(3
/2)*b) + (d^(3/2)*Log[d*x + Sqrt[d]*Sqrt[c + d*x^2]])/b

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 1956, normalized size = 19.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(3/2)/x^2/(b*x^2+a),x)

[Out]

1/6*b/a/(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-1/4/
a*d*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x-3/4/a*d^(1/2)*ln((-
d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1
/2))-(a*d-b*c)/b)^(1/2))*c-1/2/(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-
(a*d-b*c)/b)^(1/2)*d+1/2*b/a/(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a
*d-b*c)/b)^(1/2)*c+1/2/b*d^(3/2)*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2
*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/2/b*a/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-
2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a
*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*d^2+1/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(
1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2
*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*d*c-1/2*b/a/(-a*b)^(1/2)/
(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b
*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*c^2-1/6*b
/a/(-a*b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-1/4/a*d*(
(x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x-3/4/a*d^(1/2)*ln((d*(-a*
b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(
a*d-b*c)/b)^(1/2))*c+1/2/(-a*b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b
*c)/b)^(1/2)*d-1/2*b/a/(-a*b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c
)/b)^(1/2)*c+1/2/b*d^(3/2)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*
(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))+1/2/b*a/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-
b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/
2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*d^2-1/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln
((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*
(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*d*c+1/2*b/a/(-a*b)^(1/2)/(-(a*d-
b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)
^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*c^2-1/a/c/x*(d*x
^2+c)^(5/2)+1/a*d/c*x*(d*x^2+c)^(3/2)+3/2/a*d*x*(d*x^2+c)^(1/2)+3/2/a*d^(1/2)*c*ln(x*d^(1/2)+(d*x^2+c)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )}^{\frac{3}{2}}}{{\left (b x^{2} + a\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/x^2/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)^(3/2)/((b*x^2 + a)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.49242, size = 1553, normalized size = 15.23 \begin{align*} \left [\frac{2 \, a d^{\frac{3}{2}} x \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right ) -{\left (b c - a d\right )} x \sqrt{-\frac{b c - a d}{a}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left (a^{2} c x -{\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, \sqrt{d x^{2} + c} b c}{4 \, a b x}, -\frac{4 \, a \sqrt{-d} d x \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right ) +{\left (b c - a d\right )} x \sqrt{-\frac{b c - a d}{a}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left (a^{2} c x -{\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \, \sqrt{d x^{2} + c} b c}{4 \, a b x}, \frac{a d^{\frac{3}{2}} x \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right ) -{\left (b c - a d\right )} x \sqrt{\frac{b c - a d}{a}} \arctan \left (\frac{{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c} \sqrt{\frac{b c - a d}{a}}}{2 \,{\left ({\left (b c d - a d^{2}\right )} x^{3} +{\left (b c^{2} - a c d\right )} x\right )}}\right ) - 2 \, \sqrt{d x^{2} + c} b c}{2 \, a b x}, -\frac{2 \, a \sqrt{-d} d x \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right ) +{\left (b c - a d\right )} x \sqrt{\frac{b c - a d}{a}} \arctan \left (\frac{{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c} \sqrt{\frac{b c - a d}{a}}}{2 \,{\left ({\left (b c d - a d^{2}\right )} x^{3} +{\left (b c^{2} - a c d\right )} x\right )}}\right ) + 2 \, \sqrt{d x^{2} + c} b c}{2 \, a b x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/x^2/(b*x^2+a),x, algorithm="fricas")

[Out]

[1/4*(2*a*d^(3/2)*x*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) - (b*c - a*d)*x*sqrt(-(b*c - a*d)/a)*log((
(b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*(a^2*c*x - (a*b*c - 2*a^2*
d)*x^3)*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)) - 4*sqrt(d*x^2 + c)*b*c)/(a*b*x), -
1/4*(4*a*sqrt(-d)*d*x*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) + (b*c - a*d)*x*sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 -
8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqr
t(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 4*sqrt(d*x^2 + c)*b*c)/(a*b*x), 1/2*(a*d^(3/
2)*x*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) - (b*c - a*d)*x*sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*
a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt((b*c - a*d)/a)/((b*c*d - a*d^2)*x^3 + (b*c^2 - a*c*d)*x)) - 2*sqrt(d*x^2
+ c)*b*c)/(a*b*x), -1/2*(2*a*sqrt(-d)*d*x*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) + (b*c - a*d)*x*sqrt((b*c - a*d)/
a)*arctan(1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt((b*c - a*d)/a)/((b*c*d - a*d^2)*x^3 + (b*c^2 - a*
c*d)*x)) + 2*sqrt(d*x^2 + c)*b*c)/(a*b*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c + d x^{2}\right )^{\frac{3}{2}}}{x^{2} \left (a + b x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(3/2)/x**2/(b*x**2+a),x)

[Out]

Integral((c + d*x**2)**(3/2)/(x**2*(a + b*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.18765, size = 220, normalized size = 2.16 \begin{align*} -\frac{d^{\frac{3}{2}} \log \left ({\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2}\right )}{2 \, b} + \frac{2 \, c^{2} \sqrt{d}}{{\left ({\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} - c\right )} a} + \frac{{\left (b^{2} c^{2} \sqrt{d} - 2 \, a b c d^{\frac{3}{2}} + a^{2} d^{\frac{5}{2}}\right )} \arctan \left (\frac{{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt{a b c d - a^{2} d^{2}}}\right )}{\sqrt{a b c d - a^{2} d^{2}} a b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/x^2/(b*x^2+a),x, algorithm="giac")

[Out]

-1/2*d^(3/2)*log((sqrt(d)*x - sqrt(d*x^2 + c))^2)/b + 2*c^2*sqrt(d)/(((sqrt(d)*x - sqrt(d*x^2 + c))^2 - c)*a)
+ (b^2*c^2*sqrt(d) - 2*a*b*c*d^(3/2) + a^2*d^(5/2))*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*
d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*d - a^2*d^2)*a*b)